Visual Analysis of Large Multivariate Scattered Data using Clustering and Probabilistic Summaries

نویسندگان

چکیده

Rapidly growing data sizes of scientific simulations pose significant challenges for interactive visualization and analysis techniques. In this work, we propose a compact probabilistic representation to interactively visualize large scattered datasets. contrast previous approaches that represent blocks volumetric using probability distributions, model clusters arbitrarily structured multivariate data. detail, discuss how efficiently store high-dimensional distribution each cluster. We observe it suffices consider low-dimensional marginal distributions two or three dimensions at time employ common visual Based on observation, by combinations Gaussian mixture models. the application techniques representation. particular, investigate several frequency-based views, such as density plots in 1D 2D, density-based parallel coordinates, histogram. uncertainty introduced representation, level-of-detail mechanism, explicitly outliers. Furthermore, spatial splatting anisotropic 3D Gaussians which derive closed-form solution. Lastly, describe brushing linking clustered Our evaluation large, real-world datasets demonstrates scaling our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Generation of Visual Summaries for Multivariate Geographical Data Analysis

The visual analysis of geographically referenced datasets with a large number of attributes is challenging due to the fact that the characteristics of the attributes are highly dependent upon the locations at which they are focussed and the scale at which they are measured. Here, we develop attribute signatures – interactively crafted graphics that show the geographic variability of statistics ...

متن کامل

Inducing Probabilistic Syllable Classes Using Multivariate Clustering

An approach to automatic detection of syllable structure is presented. We demonstrate a novel application of EM-based clustering to multivariate data, exempli ed by the induction of 3and 5-dimensional probabilistic syllable classes. The qualitative evaluation shows that the method yields phonologically meaningful syllable classes. We then propose a novel approach to grapheme-to-phoneme conversi...

متن کامل

Analysis of consistency in large multi-section courses using exploration of linked visual data summaries

Higher education courses with large student enrollments are commonly offered in multiple sections by multiple instructors. Monitoring consistency of teaching activities across sections is crucial in achieving equity for all students, and in developing strategies in response to emerging patterns and outliers. To address this need, we present an approach to analyze the multivariate data of sectio...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Probabilistic Model-based Clustering of Multivariate and Sequential Data

Probabilistic model-based clustering, based on nite mixtures of multivariate models, is a useful framework for clustering data in a statistical context. This general framework can be directly extended to clustering of sequential data, based on nite mixtures of sequential models. In this paper we consider the problem of tting mixture models where both multivariate and sequential observations are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Visualization and Computer Graphics

سال: 2021

ISSN: ['1077-2626', '2160-9306', '1941-0506']

DOI: https://doi.org/10.1109/tvcg.2020.3030379